\documentclass[12pt]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{geometry} \geometry{a4paper, margin=1in} \title{LSTM Model and Stock Price Prediction} \author{} \date{} \begin{document} \maketitle \section*{Stock Price Equation} The price of a stock \( P(t) \) at discrete time \( t \in \{t_1, t_2, t_3, \ldots\} \) is given by: \[ P(t) = P(t-1) + F_{\text{macro}}(t) + F_{\text{micro}}(t) + F_{\text{technical}}(t) + F_{\text{noise}}(t) \] \begin{itemize} \item \( P(t-1) \): Price of the stock at the previous time step. \item \( F_{\text{macro}}(t) \): Macro-level influences. \item \( F_{\text{micro}}(t) \): Micro-level influences. \item \( F_{\text{technical}}(t) \): Technical analysis factors. \item \( F_{\text{noise}}(t) \): Stochastic noise term. \end{itemize} \subsection*{Macro Influences} \[ F_{\text{macro}}(t) = \alpha_1 G(t) + \alpha_2 I(t) + \alpha_3 R(t) \] \begin{itemize} \item \( \alpha_i \): Weights determining the strength of each factor. \item \( G(t) \): GDP growth/market sentiment, modeled as: \[ G(t) = y \sin\left(\frac{2\pi t}{T_B}\right) + N_2 Z_2(t) \] \item \( I(t) \): Inflation rate, modeled as: \[ I(t) = \Theta e^{-\lambda_0 t} + N_2 Z_2(t) \] \item \( R(t) \): Risk-free interest rate: \[ R(t) = r_0 + N_3 Z_3(t) \] \end{itemize} \subsection*{Micro Influences} \[ F_{\text{micro}}(t) = \beta_1 E(t) + \beta_2 S(t) + \beta_3 C(t) \] \begin{itemize} \item \( E(t) \): Earnings per share, \( E(t) = E_0 e^{\mu t} \left[1 + \sin\left(\frac{\pi t}{T_E}\right)\right] \) \item \( S(t) \): Scale growth rates: \[ S(t) = \frac{\text{Max scale level}}{1 + e^{-K_0(t-t_0)}} + N_5 Z_5(t) \] \item \( C(t) \): Competition index: \[ C(t) = \frac{1}{t + \text{Season growth cycle}} + N_6 Z_6(t) \] \end{itemize} \subsection*{Technical Factors} \[ F_{\text{technical}}(t) = \delta_1 M(t) + \delta_2 V(t) \] \begin{itemize} \item \( M(t) \): Momentum, \( M(t) = P(t+1) - P(t+5) \) \item \( V(t) \): Volatility: \[ V(t) = \sqrt{\frac{1}{W} \sum_{i=1}^N [P(t-i) - \overline{P}(t)]^2} \] where \( \overline{P}(t) = \frac{1}{N} \sum_{i=1}^N P(t-i) \). \end{itemize} \subsection*{Noise Term} \[ F_{\text{noise}}(t) = \sigma Z(t) \] \begin{itemize} \item \( \sigma Z(t) \): Noise term, where \( Z(t) \sim N(0, 1) \). \end{itemize} \section*{LSTM Architecture} \begin{enumerate} \item Feature vector \( X(t) \): \[ X(t) = \begin{bmatrix} P(t-2) \\ P(t-1) \\ P(t) \\ G(t) \\ E(t) \\ S(t) \\ C(t) \\ M(t) \\ V(t) \end{bmatrix} \] \item LSTM components: \[ f(t) = \sigma(W_f X(t) + U_f h(t-1) + b_f) \] \[ i(t) = \sigma(W_i X(t) + U_i h(t-1) + b_i) \] \[ \tilde{C}(t) = \tanh(W_c X(t) + U_c h(t-1) + b_c) \] \[ C(t) = f(t) \cdot C(t-1) + i(t) \cdot \tilde{C}(t) \] \[ o(t) = \sigma(W_o X(t) + U_o h(t-1) + b_o) \] \[ h(t) = o(t) \cdot \tanh(C(t)) \] \end{enumerate} \section*{Loss Function} \[ \text{MSE} = \frac{1}{T} \sum_{t=1}^T [P(t) - \hat{P}(t)]^2 \] \[ \text{MAE} = \frac{1}{T} \sum_{t=1}^T |P(t) - \hat{P}(t)| \] \end{document}