oil scraper works

This commit is contained in:
klein panic
2024-10-30 23:47:32 -04:00
parent b6e0578b2d
commit 3ae788ed9b
3 changed files with 114 additions and 29 deletions

View File

@@ -0,0 +1,76 @@
from selenium import webdriver
from selenium.webdriver.firefox.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from bs4 import BeautifulSoup
import pandas as pd
import os
# URL for OilPrice.com homepage
OIL_NEWS_URL = "https://oilprice.com/Latest-Energy-News/World-News/"
# Set up the data directory
DATA_DIR = os.path.join(os.getcwd(), "data")
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
def scrape_oil_news():
print("Scraping oil market news using Selenium...")
# Set up Selenium options
options = Options()
options.headless = True
driver = webdriver.Firefox(options=options)
driver.get(OIL_NEWS_URL)
# Wait until 'categoryArticle' elements load
try:
WebDriverWait(driver, 20).until(
EC.presence_of_element_located((By.CLASS_NAME, "categoryArticle"))
)
except Exception as e:
print("Error: Content did not load properly.")
driver.quit()
return pd.DataFrame()
soup = BeautifulSoup(driver.page_source, "html.parser")
driver.quit()
# Parse the articles
articles = soup.find_all('div', class_='categoryArticle')
news_data = []
print(f"Found {len(articles)} articles.")
for i, article in enumerate(articles):
# Extract the title, link, and date using the adjusted structure
headline = article.find('h2', class_='categoryArticle__title').get_text(strip=True) if article.find('h2', class_='categoryArticle__title') else None
link = article.find('a', href=True)['href'] if article.find('a', href=True) else None
date = article.find('p', class_='categoryArticle__meta').get_text(strip=True) if article.find('p', class_='categoryArticle__meta') else None
# Log each article's details for debugging
print(f"Article {i+1} - Headline: {headline}, Link: {link}, Date: {date}")
# Only add valid entries
if headline and link and date:
news_data.append({
'headline': headline,
'link': link, # Assuming the link is already a full URL
'date': date
})
df = pd.DataFrame(news_data)
return df
def run_scraper():
news_df = scrape_oil_news()
file_path = os.path.join(DATA_DIR, 'oil_news.csv')
if not news_df.empty:
news_df.to_csv(file_path, index=False)
print(f"Oil news data saved to {file_path}")
else:
print("No data was scraped. The CSV file is empty.")

View File

@@ -1,6 +1,8 @@
# scrapers/oil_news_scraper.py
import requests
from selenium import webdriver
from selenium.webdriver.firefox.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from bs4 import BeautifulSoup
import pandas as pd
import os
@@ -8,60 +10,67 @@ import os
# URL for OilPrice.com homepage
OIL_NEWS_URL = "https://oilprice.com/Latest-Energy-News/World-News/"
# Define the directory to store the scraped data
# Set up the data directory
DATA_DIR = os.path.join(os.getcwd(), "data")
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
# Function to scrape news headlines from OilPrice.com
def scrape_oil_news():
print("Scraping oil market news...")
print("Scraping oil market news using Selenium...")
# Send an HTTP request to the website
response = requests.get(OIL_NEWS_URL)
response.raise_for_status()
# Set up Selenium options
options = Options()
options.headless = True
driver = webdriver.Firefox(options=options)
# Print the HTML to see what we are working with
print(response.text[:1000]) # Print only the first 1000 characters for brevity
driver.get(OIL_NEWS_URL)
# Parse the HTML using BeautifulSoup
soup = BeautifulSoup(response.text, "html.parser")
# Wait until 'categoryArticle' elements load
try:
WebDriverWait(driver, 20).until(
EC.presence_of_element_located((By.CLASS_NAME, "categoryArticle"))
)
except Exception as e:
print("Error: Content did not load properly.")
driver.quit()
return pd.DataFrame()
# Find all news article containers (class names updated)
soup = BeautifulSoup(driver.page_source, "html.parser")
driver.quit()
# Parse the articles
articles = soup.find_all('div', class_='categoryArticle')
# List to store the scraped data
news_data = []
# Loop through each article container
for article in articles:
# Extract the headline, date, and link
headline = article.find('a').get_text(strip=True) if article.find('a') else None
link = article.find('a')['href'] if article.find('a') else None
date = article.find('span', class_='categoryArticle__date').get_text(strip=True) if article.find('span', class_='categoryArticle__date') else None
print(f"Found {len(articles)} articles.")
# Only append valid data
for i, article in enumerate(articles):
# Extract the title, link, and date using the adjusted structure
headline = article.find('h2', class_='categoryArticle__title').get_text(strip=True) if article.find('h2', class_='categoryArticle__title') else None
link = article.find('a', href=True)['href'] if article.find('a', href=True) else None
date = article.find('p', class_='categoryArticle__meta').get_text(strip=True) if article.find('p', class_='categoryArticle__meta') else None
# Log each article's details for debugging
print(f"Article {i+1} - Headline: {headline}, Link: {link}, Date: {date}")
# Only add valid entries
if headline and link and date:
news_data.append({
'headline': headline,
'link': f"https://oilprice.com{link}",
'link': link, # Assuming the link is already a full URL
'date': date
})
df = pd.DataFrame(news_data)
return df
# Function to run the scraper and save data
def run_scraper():
# Scrape oil news
news_df = scrape_oil_news()
# Define the file path for saving the data
file_path = os.path.join(DATA_DIR, 'oil_news.csv')
# Save the DataFrame to a CSV file
if not news_df.empty:
news_df.to_csv(file_path, index=False)
print(f"Oil news data saved to {file_path}")
else:
print("No data was scraped. The CSV file is empty.")